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TN: Forecast Error in Regression Models

Occasionally, we receive requests for a technical paper about regression modeling beyond our regular
NumXL support, in order to delve more deeply into the mathematical formulation of MLR. We are
always happy to address user requests, so we decided to share our internal technical notes with you.

These notes were originally composed when we sat in on a time series analysis class. Over the years,
we’ve maintained these notes with new insights, empirical observations, and newly-acquired intuitions.
We often go back to these notes for resolving development issues or to properly address a product
support matter.

In this paper, we’ll go over a simple, yet fundamental and often asked question about forecast errorin a
regression model.

Background

Let’s assume the true underlying model or process is defined as follows:
Y=a+[X+ X+ + B X +E
Where

e Y isthe dependent (response) variable.
o {X,X,,..., X } are the independent (explanatory) variables.

e (isthe real intercept (constant).
. ﬂj is the coefficient (loading) of the j-th independent variable.

e {c}isaset of independent, identical, normally distributed errors (residuals).
£~iid ~ N(0,0?)

In practice, the true underlying model is unknown. However, with finite sample data and an OLS or other
procedure, we can estimate the values of the coefficients (aka loadings) for the different input
(explanatory) variables.

Let’s assume we have a sample dataset with N observations, i.e. (X,;,X,;,..., X i, ¥;) - Using an OLS

method, we arrive at the following regression model:

Y =G+ B B+t S +U
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Where

N

. ﬂj is the OLS estimate for the j-th coefficient (loading).

e (s the OLS estimate of the intercept.
e {u}isthe regression residuals. The residuals are homoscedastic (i.e. stable variance) and

uncorrelated with any of the input variables.
E[u]=0
E[u’]=5s°
Elux x, ]1=0

1<i<k

Forecast
In practice, the true regression model is hidden or unknown. We will revert to the estimated regression
model to perform a forecast.

Mathematically, the conditional forecast can be expressed as follows:

Y =E[Y [ X, X0 X I= 0+ BX + BoXy +.oc+ B X,
As a result, the errors in the forecast originate from two distinct sources:

1. Residuals ( {e}or {u})

2. Errorsin the estimated coefficients’ values (i.e. using ﬂj instead of ,Bj )

Using an OLS procedure, the estimated values of one ﬂj are normally distributed. Nevertheless, the

errors in the values of the whole set of parameters {,[7’]} are correlated. So, we can ignore the

1<j<k
covariance terms when we examine the statistical significance of one coefficient, but we will need to
factor in their overall/aggregate effect for the forecast error.

As a result, the forecast variance (aka error squared) can be expressed as follows:

Z(Xj,m _Yj)2

j=

Varly = ¥ X Xo oo Xeml =0 1+ 1.

N 2.2 (X = %)

i-1 j=1
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. . 2 . . .
However, the variance of residuals (o) in the true model is unknown, so we use the variance of the

error terms (oA'2 ) of the estimated regression model:

6° =E[W]=E[(y-a - X — X, —.= BX)]= =

Overall, the MLR forecast error squared is expressed as follows:

k
-2
SSE 1 2% =%)
Var[y_ylxlm'XZm""’ka]: X{1+—+ NJ:1k
m? 72, m™TN—k -1 N e
ZZ(Xj,i—X,)
i=1 j=1

Now, let’s take a close look at the formula above and try to explain the different terms:

~2. . . . . . .
1. o“isthe estimated variance of true regression model residuals. This value is constant and

independent from the X-value(s) of the target data-point.
0"_2
2. — isthe errorin the estimated intercept (aka constant). This value is constant and

independent from the X-values of the target data-point.
3. The last term is proportional to the squared (Euclidean) distance of the target data-point from
the center of the sample data set. This term is zero at the sample data center point

(Xi i’ 2 i Xk |)
In effect, the forecast variance is higher for data points (X,;, X, ,..., X, ;) that are further from the
center of the input sample data set (i.e. (X;,%X,;,.., X;))-
As a result, the forecast error is smallest at the sample data center point (X,;,X;;,.... X ;) -
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