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Tutorial: Principal Component 101

This is the first entry in what will become an ongoing series on principal components analysis (PCA). In
this tutorial, we will start with the general definition, motivation and applications of a PCA, and then use
NumXL to carry on such analysis. Next, we will closely examine the different output elements in an
attempt to develop a solid understanding of PCA, which will pave the way to a more advanced
treatment in future issues.

In this tutorial, we will use the socioeconomic data provided by Harman (1976). The five variables
represent total population (“Population”), median school years (“School”), total employment
(“Employment”), miscellaneous professional services (“Services”), and median house value (“House
Value”). Each observation represents one of twelve census tracts in the Los Angeles Standard
Metropolitan Statistical Area.

Data Preparation

First, let’s organize our input data. First, we place the values of each variable in a separate column, and
each observation (i.e. census tract in LA) on a separate row.

misc
median total professional median
District  population schoolyrs employment services  house value
1 5700 128 2500 270 S 25,000
2 1000 109 500 10 5 10,000
3 3400 8.8 1000 10 5 9,000
4 3800 136 1700 140 % 25,000
5 4000 128 1600 140 S 25,000

Note that the scales (i.e. magnitude) of the variables vary significantly, so any analysis of raw data will be
biased toward the variables with a larger scale, and downplay the effect of ones with a lower scale.

To better understand the problem, let’s compute the correlation matrix for the 5 variables:
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population  100%
median school yrs 1% 100%
total employment  74% 15% 100%
misc professional services  27% B9% 51% 100%

median house value -1% 86% 13% 78% 100%
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The five (5) variables are highly correlated, so one may wonder:

1. If we were to use those variables to predict another variable, do we need the 5 variables?
2. Are there hidden forces (drivers or other factors) that move those 5 variables?

In practice, we often encounter correlated data series: commodity prices in different locations, future
prices for different contracts, stock prices, interest rates, etc.

In plain English, what is principal component analysis (PCA)?
PCA is a technique that takes a set of correlated variables and linearly transforms those variables into a
set of uncorrelated factors.

To explain it further, you can think about PCA as an axis-system transformation. Let’s examine this plot
of two correlated variables:
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Simply put, from the (X, Y) Cartesian system, the data points are highly correlated. By transforming
(rotating) the axis into (Z, W), the data points are no longer correlated.
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In theory, the PCA finds that those transformations (of the axis) of data points will look uncorrelated
with their respect.

OK, now where are the principal components?
To transform the data points from the (X, Y) Cartesian system to (Z, W), we need to compute the zand w
values of each data point:

Z =X+ BY,
W, =X + By,

In effect, we are replacing the input variables (X, y;) with those of (z,,W,) . The (z,,W,) values are ones

we refer to as the principal components.

Alright, how do we reduce the dimensions of the variables?
When we transform the values of the data points (X, Y;) into the new axis system (z;,W,) , we may find
that a few axes capture more of the values’ variation than others. For instance, in our example above,

we may claim that all W, values are plain zero and don’t really matter.

X =nNL + oW, N X =N
Yi =724+ .W Y =757

In effect, the two dimensional system (Zi , Wi) is reduced to a one-dimensional system ( Z; ).

Of course, for this example, dropping the W factor distorts our data, but for higher dimensions it may
not be so bad.

Which component should we drop?

In practice, we order the components (aka factors) in terms of their variance (highest first) and examine
the effect of removing the ones of lower variance (right most) in an effort to reduce the dimension of
the data set with minimal loss of information.

Why should we care about principal components?

A risk manager can quantify their overall risk in terms of a portfolio aggregate exposure to a handful of
drivers, instead of tens of hundreds of correlated securities prices. Furthermore, designing an effective
hedging strategy is vastly simplified.

For traders, quantifying trades in terms of their sensitivities (e.g. delta, gamma, etc.) to those drivers
gives trader options to substitute (or trade) one security for another, construct a trading strategy,
hedge, synthesize a security, etc.

A data modeler can reduce the number of input variables with minimal loss of information.
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Process
Now we are ready to conduct our PCA. First, select an empty cell in your worksheet where you wish the
output to be generated, then locate and click on the “PCA” icon in the NumXL tab (or toolbar).

¥ Ml ® d |

ARMA ARMAXY GARCH COMECQC | Regressio PCA GLM _r:'r Diagnosis Calibration Forecast Simulation
Modeling Factoranalysis B Power Tools
The principal component analysis Wizard pops up.
( Principal componen_t Analysis (PCA uw
General | Options | Missing Values |
InputData | Sheet1!$B$2:$F$14 =
Groupedby (¢ Columns " Rows

Variables Mask I

Output | $8$22

Select the cells range for the five input variable values.
Notes:

1. The cells range includes (optional) the heading (“Label”) cell, which would be used in the output
tables where it references those variables.

2. Theinput variables (i.e. X) are already grouped by columns (each column represents a variable),
so we don’t need to change that.

3. Leave the “Variable Mask” field blank for now. We will revisit this field in later entries.
By default, the output cells range is set to the current selected cell in your worksheet.

Finally, once we select the Input data (X) cells range, the “Options” and “Missing Values” tabs become
available (enabled).

Next, select the “Options” tab.
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Initially, the tab is set to the following values:

e “Standardize Input” is checked. This option in effect replace the values of each variable with its
standardized version (i.e. subtract the mean and divide by standard deviation). This option
overcomes the bias issue when the values of the input variables have different magnitude
scales. Leave this option checked.

e “Principal Component Output” is checked. This option instructs the wizard to generate PCA
related tables. Leave it checked.

e Under “Principal Component,” check the “Values” option to display the values for each principal
component.

e The significance level (aka « ) is set to 5%.

e The “Input Variables” is unchecked. Leave it unchecked for now.

Now, click on the “Missing Values” tab.

General | Options Missing Values |

(" Do not accept missing values
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In this tab, you can select an approach to handle missing values in the data set (X’s). By default, any

missing value found in any of input variables (X) in any observation would exclude the observation from

the analysis.

This treatment is a good approach for our analysis, so let’s leave it unchanged.

Now, click “OK” to generate the output tables.

Principal component analysis

PC(1) PC(2) PCI3) PCl4) PC(5)
Variance 276 165 0.30 0.19 .09
Propotion 55.2% 33.1% 5.1% 3.9% 1.8%
Cum. Propotion 55.2% 38.3% 94 3% 98.2% 100.0%
Loadings  PC{1) PC(2) PCI3) PCl4) PC(5)
population 0227 -0.657 -0.640 0.308 -0.109
median school yrs 0.503 0.324 -0.383 -0.605 -0.359
total employment 0.339 -0.587 0.426 -0.499 0.331
misc professional services 0.560 0.014 0.488 0.455 -0.491
median house value 0516 0.344 -0.153 0.287 0714
Values  PC(1) PC(2) PCI3) PCl4) PC(5)
1795 0902 0.467 0.323 0.075
-2.259 1642 0.447 -0.477 -0.478
-2. 664 0450 0.5659 0.299 -0.131
0995 1.853 -0.166 -0.358 0334
0.747 1707 -0.066 -0.013 0.467
-1.430 -1.311 0.368 0.650 0371
-1.072 0473 -1.545 0511 -0.220
-0.100 -1.137 -0.342 -0.589 0.095
1233 -0.933 -0.270 -0.216 -0.184
3282 -0.318 0.352 0444 -0.486
-0.689 -1.718 0115 0123 0.152
0211 -1.620 0.070 -0.698 0.004
Analysis
1. PCA Statistics
Principal component analysis
PCi1) PCi2) PCi3) pCla) PClS)
Variance 276 165 0.30 0.19 0.09
Propotion 55.2% 33.1% 5.1% 3.9% 1.8%
Cum. Propotion 55.2% 38.3% 04 3% 98.2% 100.0%
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1. The principal components are ordered (and named) according to their variance in a descending
order, i.e. PC(1) has the highest variance.

2. Inthe second row, the proportion statistics explain the percentage of variation in the original
data set (5 variables combined) that each principal component captures or accounts for.

3. The cumulative proportion is a measure of total variation explained by the principal components
up to this current component.
Note: In our example, the first three PC account for 94.3% of the variation of the 5 variables.

4. Note that the sum of variances of the PC should yield the number of input variables, which in
this case is five (5).

2. Loadings
In the loading table, we outline the weights of a linear transformation from the input variable
(standardized) coordinate system to the principal components.

Loadings  PC{1) PCi2) PC(3) PCi4) PC{5)

population 0227 -0.657 -0.640 0.308 -0.109

median school yrs 0.503 0.324 -0.383 -0.605 -0.359

total employment 0.339 -0.587 0426 -0.4949 0.331

misc professional services 0.560 0.014 0.488 0.455 -0.491
median house value  0.516 0.344 -0.153 0.287 0.714

For example, the linear transformation for PC, is expressed as follows:

PC, =0.27X, +0.503X, +0.339X, + 0.56 X, + 0.516 X,

Note:
1. The squared loadings (column) adds up to one.
$ 2
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population median school yrs  total employment  misc professional median house value
services
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2. Inthe graph above, we plotted the loadings for our input variables in the first three

components.

3. The median school years, misc. professional services and median house value variables have

comparable loadings in PC(1), next comes total employment loading and finally, population. One

may propose this as a proxy for the wealth/income factor.

4. Interpreting the loadings for the input variables in the remaining components prove to be more

difficult, and require a deeper level of domain expertise.

5. Finally, computing the input variables back from the PC can be easily done by applying the

weights in the row instead of the column. For example, the population factor is expressed as

follows:

X, =0.227PC, -0.657PC, —0.64PC, + 0.308PC, —0.109PC,
6. We’'ll discuss the PC loading later in this tutorial.

3. Principal Component Values

values  PC(1) PC(2) PC(3) PC(4) PC(5)
1.795 0.902 0.467 0.323 0.075
-2.259 1.642 0.447 -0.477 -0.478
-2.664 0.460 0.569 0.299 -0.131
0.995 1.853 -0.166 -0.358 0.334
0.747 1.707 -0.066 -0.013 0.457
-1.480 -1.311 0.368 0.650 0371
-1.072 0.473 -1.545 0511 0220
-0.100 -1.137 0342 -0.589 0.095
1.233 -0.933 -0.270 -0.216 -0.184
3.282 -0.318 0.352 0.444 -0.486
-0.689 -1.718 0.115 0123 0.152
0.211 -1.620 0.070 -0.698 0.004

In the PC values table, we calculate the transformation output value for each dimension (i.e.

component), so the 1% row corresponds to the 1°* data point, and so on.

The variance of each column matches the value in the PCA statistics table. Using Excel, compute the

biased version of the variance function (VARA).

By definition, the values in the PCs are uncorrelated. To verify, we can calculate the correlation matrix:

PC(1) PC(2) PC(3) PC(4) PC(S)
PC(1) 100%
PC(2) 0% 100%
PC(3) 0% 0% 100%
PC(4) 0% 0% 0% 100%
PC(S) 0% 0% 0% 0% 100%
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Conclusion
In this tutorial, we converted a set of five correlated variables into five uncorrelated variables without

any loss of information.

Furthermore, we examined the proportion (and cumulative proportion) of each component as a
measure of variance captured by each component, and we found that the first three factors
(components) account for 94.3% of the five variables variation, and the first four components account
for 98%.

What do we do now?

One of the applications of PCA is dimension reduction; as in, can we drop one or more components and
yet retain the information in the original data set for modeling purposes?

In our second entry, we will look at the variation of each input variable captured by principal
components (micro-level) and compute the fitted values using a reduced set of PCs.

We will cover this particular issue in a separate entry of our series.

PCA 101 — Tutorial -9- © Spider Financial Corp, 2013



