Calculates the regression model analysis of the variance (ANOVA) values.
Syntax
SLR_ANOVA(X, Y, Intercept, Return_type)
- X
- is the independent (aka explanatory or predictor) variable data array (a one-dimensional array of cells (e.g. rows or columns)).
- Y
- is the response or the dependent variable data array (a one-dimensional array of cells (e.g., rows or columns)).
- Intercept
- is the constant or the intercept value to fix (e.g., zero). If missing, an intercept will not be fixed and is computed normally.
- Return_type
- is a switch to select the output (1 = SSR (default), 2 = SSE, 3 = SST, 4 = MSR, 5 = MSE, 6 = F-Stat, 7 = Significance F).
Method Description 1 SSR (sum of squares of the regression) 2 SSE (sum of squares of the residuals) 3 SST (sum of squares of the dependent variable) 4 MSR (mean squares of the regression) 5 MSE (mean squares error or residuals) 6 F-Stat (test score) 7 Significance F (P-value of the test)
Remarks
- The underlying model is described here.
- $$\mathbf{y} = \alpha + \beta \times \mathbf{x}$$
- The regression ANOVA table which examines the following hypothesis:
$$\mathbf{H}_o: \beta = 0 $$
$$\mathbf{H}_1: \beta \neq 0 $$ - In other words, the regression ANOVA examines the probability that regression does NOT explain the variation in $\mathbf{y}$, i.e., that any fit is due purely to chance.
- The SLR_ANOVA calculates the different values in the ANOVA tables as follows:
$$\mathbf{SST}=\sum_{i=1}^N \left(Y_i - \bar Y \right )^2 $$
$$\mathbf{SSR}=\sum_{i=1}^N \left(\hat Y_i - \bar Y \right )^2 $$
$$\mathbf{SSE}=\sum_{i=1}^N \left(Y_i - \hat Y_i \right )^2 $$
Where:- $N$ is the number of non-missing observations in the sample data.
- $\bar Y$ is the empirical sample average for the dependent variable.
- $\hat Y_i$ is the regression model estimate value for the i-th observation.
- $\mathbf{SST}$ is the total sum of squares for the dependent variable.
- $\mathbf{SSR}$ is the total sum of squares for the regression (i.e., $\hat y$) estimate.
- $\mathbf{SSE}$ is the total sum of error (aka residuals $\epsilon$) terms for the regression (i.e. $\epsilon = y - \hat y$) estimate.
- $\mathbf{SST} = \mathbf{SSR} + \mathbf{SSE}$.
$$\mathbf{MSR} = \frac{\mathbf{SSR} }{1} = \mathbf{SSR}$$
$$\mathbf{MSE} = \frac{ \mathbf{SSE} }{N-2}$$
$$\mathbf{F-Stat} = \frac{\mathbf{MSR} }{ \mathbf{MSE} }$$
Where:- $\mathbf{MSR}$ is the mean squares of the regression. For SLR, the $\mathbf{MSR} = \mathbf{SSR}$.
- $\mathbf{MSE}$ is the mean squares of the residuals.
- $\textrm{F-Stat}$ is the test score of the hypothesis.
$\textrm{F-Stat} \sim \mathbf{F}\left(1,N-2\right)$.
- The sample data may include data points with missing values.
- Each row in the input matrix corresponds to an observation.
- Observations (i.e., row) with missing values in X or Y are removed.
- The number of rows of the response variable (Y) must equal the number of rows of the explanatory variables (X).
- The SLR_ANOVA function is available starting with version 1.60 APACHE.
Files Examples
Related Links
References
- Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6
- Kenney, J. F. and Keeping, E. S. (1962) "Linear Regression and Correlation." Ch. 15 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 252-285
Comments
Article is closed for comments.