Calculates the OLS regression coefficient values.
Syntax
MLR_PARAM (X, Mask, Y, Intercept, Return, Parameter Index, Alpha)
- X
- is the independent (explanatory) variables data matrix, so each column represents one variable.
- Mask
- is the boolean array to choose the explanatory variables in the model. If missing, all variables in X are included.
- Y
- is the response or the dependent variable data array (a one-dimensional array of cells (e.g., rows or columns)).
- Intercept
- is the constant or the intercept value to fix (e.g., zero). If missing, an intercept will not be fixed and is computed typically.
- Return
- is a switch to select the return output (1 = Mean Value (default), 2 = Std. Error, 3 = T-Stat, 4 = P-Value, 5 = Upper Limit (CI), 6 = Lower Limit (CI)).
Value Return 1 Mean Value (default). 2 Standard Error. 3 T-Stat. 4 P-Value. 5 Upper Limit. 6 Lower Limit. - Parameter Index
- is a switch to designate the target parameter (0 = intercept (default), 1 = first variable, 2 = 2nd variable, etc.).
- Alpha
- is the statistical significance of the test (i.e., alpha). If missing or omitted, an alpha value of 5% is assumed.
Remarks
- The underlying model is described here.
- $$\mathbf{y} = \mathbf{X}\boldsymbol\beta + \boldsymbol\varepsilon$$ $$\hat{\boldsymbol\beta} = (\mathbf{X}^{\rm T}\mathbf{X})^{-1} \mathbf{X}^{\rm T}\mathbf{y} = \big(\, \tfrac{1}{n}{\textstyle\sum} \mathbf{x}_i \mathbf{x}^{\rm T}_i \,\big)^{-1} \big(\, \tfrac{1}{n}{\textstyle\sum} \mathbf{x}_i y_i \,\big).$$ Where:
- $\hat{\boldsymbol\beta}$ is the estimated regression coefficients.
- The sample data may include data points with missing values.
- Each column in the input matrix corresponds to a separate variable.
- Each row in the input matrix corresponds to an observation.
- Observations (i.e., rows) with missing values in X or Y are removed.
- The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variable (X).
- The MLR_PARAM function is available starting with version 1.60 APACHE.
Files Examples
Related Links
References
- Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6.
- Kenney, J. F. and Keeping, E. S. (1962) "Linear Regression and Correlation." Ch. 15 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 252-285.
Comments
Article is closed for comments.