GARCH_AIC - Akaike's Information Criterion (AIC) of a GARCH Model

Calculates the Akaike's information criterion (AIC) of a given estimated GARCH model (with corrections to small sample sizes).

Syntax

GARCH_AIC ([x], order, µ, [α], [β], f, ν)

[X]
Required. Is the univariate time series data (a one-dimensional array of cells (e.g., rows or columns)).
Order
Optional. Is the time order in the data series (i.e., the first data point's corresponding date (earliest date = 1 (default), latest date = 0)).
Value Order
1 Ascending (the first data point corresponds to the earliest date) (default).
0 Descending (the first data point corresponds to the latest date).
µ
Optional. Is the GARCH model long-run mean (i.e., mu). If missing, the process mean is assumed to be zero.
[α]
Required. Are the parameters of the ARCH(p) component model: [α0 α1, α2 … αp] (starting with the lowest lag).
[β]
Optional. Are the parameters of the GARCH(q) component model: [β1, β2 … βq] (starting with the lowest lag).
F
Optional. Is the probability distribution function of the innovations/residuals (1 = Gaussian (default), 2 = t-Distribution, 3 = GED).
Value Probability Distribution
1 Gaussian or Normal Distribution (default).
2 Student's t-Distribution.
3 Generalized Error Distribution (GED).
ν
Optional. Is the shape parameter (or degrees of freedom) of the innovations/residuals’ probability distribution function.

Remarks

  1. The underlying model is described here.
  2. Akaike's Information Criterion (AIC) is described here.
  3. The time series is homogeneous or equally spaced.
  4. The time series may include missing values (e.g., #N/A) at either end.
  5. Given a fixed data set, several competing models may be ranked according to their AIC, the model with the lowest AIC being the best.
  6. For the input argument - ([α]) (parameters of the ARCH component):
    • The input argument is not optional.
    • The value in the first element must be positive.
    • The order of the parameters starts with the lowest lag.
    • One or more parameters may have missing values or error codes (i.e., #NUM!, #VALUE!, etc.).
    • In the case where alpha has one non-missing entry/element (first), no ARCH component is included.
    • The order of the ARCH component model is solely determined by the order (minus one) of the last value in the array with a numeric value (vs. missing or error).
  7. For the input argument - ([β]) (parameters of the GARCH component):
    • The input argument is optional and can be omitted, in which case no GARCH component is included.
    • The order of the parameters starts with the lowest lag.
    • One or more parameters may have missing values or error codes (i.e., #NUM!, #VALUE!, etc.).
    • The order of the GARCH component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
  8. GARCH (p, q) model has p+q+2 parameters to estimate.
  9. The AIC for a GARCH model is defined as:$$AIC = 2(p+q+1) - 2\times \ln L^*$$

    Where:

    • $\ln L^*$ is the log-likelihood function.
    • $T$ is the number of non-missing values.
    • $p$ is the order of the ARCH component model.
    • $q$ is the order of the GARCH component model.

Files Examples

Related Links

References

Comments

Article is closed for comments.

Was this article helpful?
0 out of 0 found this helpful