Returns an array of cells for the in-sample model fitted values of the conditional mean, volatility or residuals.
Syntax
ARMAX_FIT ([y], [x], order, [β], µ, σ, [φ], [θ], return)
- [Y]
- Required. Is the response or the dependent variable time series data array (a one-dimensional array of cells (e.g., rows or columns)).
- [X]
- Required. Is the independent variables (exogenous factors) time series data matrix, such that each column represents one variable.
- Order
- Optional. Is the time order in the data series (i.e., the first data point's corresponding date (earliest date = 1 (default), latest date = 0)).
Value Order 1 Ascending (the first data point corresponds to the earliest date) (default). 0 Descending (the first data point corresponds to the latest date). - [β]
- Optional. Is the coefficients array of the exogenous factors.
- µ
- Optional. Is the ARMA model long-run mean (i.e., mu). If missing, the process mean is assumed to be zero.
- σ
- Required. Is the standard deviation value of the model's residuals/innovations.
- [φ]
- Optional. Are the parameters of the AR(p) component model: [φ1, φ2 … φp] (starting with the lowest lag).
- [θ]
- Optional. Are the parameters of the MA(q) component model: [θ1, θ2 … θq] (starting with the lowest lag).
- Return
- Optional. Is an integer switch to select the output type: (1 = Mean (default), 2 = Volatility, 3 = Raw Residuals, 4 = Standardized Residuals).
Value Return 1 Fitted mean (default). 2 Fitted standard deviation or volatility. 3 Raw (non-standardized) residuals. 4 Standardized residuals.
Remarks
- The underlying model is described here.
- The Log-Likelihood Function (LLF) is described here.
- Each column in the explanatory factors input matrix (i.e., X) corresponds to a separate variable.
- Each row in the explanatory factors input matrix (i.e., X) corresponds to an observation.
- Observations (i.e., rows) with missing values in X or Y are assumed to be missing.
- The number of rows of the explanatory variable (X) must be equal to the number of rows of the response variable (Y).
- The time series is homogeneous or equally spaced.
- The time series may include missing values (e.g., #N/A) at either end.
- The long-run mean can take any value or be omitted, in which case a zero value is assumed.
- The residuals/innovations standard deviation (σ) must be greater than zero.
- For the input argument - ([β]):
- The input argument is optional and can be omitted, in which case no regression component is included (i.e., plain ARMA).
- The order of the parameters defines how the exogenous factor input arguments are passed.
- One or more parameters may have missing values or error codes (i.e., #NUM!, #VALUE!, etc.).
- For the input argument - ([φ]):
- The input argument is optional and can be omitted, in which case no AR component is included.
- The order of the parameters starts with the lowest lag.
- One or more parameters may have missing values or error codes (i.e., #NUM!, #VALUE!, etc.).
- The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- For the input argument - ([θ]):
- The input argument is optional and can be omitted, in which case no MA component is included.
- The order of the parameters starts with the lowest lag.
- One or more values in the input argument can be missing or an error code (i.e., #NUM!, #VALUE!, etc.).
- The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- The function was added in version 1.63 SHAMROCK.
Files Examples
Related Links
- Wikipedia - Likelihood function.
- Wikipedia - Likelihood principle.
- Wikipedia - Autoregressive moving average model.
References
- James Douglas Hamilton; Time Series Analysis, Princeton University Press; 1st edition(Jan 11, 1994), ISBN: 691042896.
- Tsay, Ruey S.; Analysis of Financial Time Series, John Wiley & SONS; 2nd edition(Aug 30, 2005), ISBN: 0-471-690740.
Comments
Article is closed for comments.