GARCH_FORESD - Volatility Forecast of GARCH Model

(Deprecated) Calculates the estimated error/standard deviation of the conditional mean forecast.

Syntax

GARCH_FORESD ([x], [σ], order, µ, [α], [β], t, return)

[X]
Required. Is the univariate time series data (a one-dimensional array of cells (e.g., rows or columns)).
[σ]
Optional. Is the univariate time series data (a one-dimensional array of cells (e.g., rows or columns)) of the last q realized volatilities.
Order
Optional. Is the time order in the data series (i.e., the first data point's corresponding date (earliest date = 1 (default), latest date = 0)).
Value Order
1 Ascending (the first data point corresponds to the earliest date) (default).
0 Descending (the first data point corresponds to the latest date).
µ
Optional. Is the GARCH model long-run mean (i.e., mu). If missing, the process mean is assumed to be zero.
[α]
Required. Are the parameters of the ARCH(p) component model: [αo α1, α2 … αp] (starting with the lowest lag).
[β]
Optional. Are the parameters of the GARCH(q) component model: [β1, β2 … βq] (starting with the lowest lag).
T
Optional. Is the forecast time/horizon (expressed in terms of steps beyond the end of the time series X). If missing, t = 1 is assumed.
Return
Optional. Is the type of desired volatility output (Term Structure = 0, Local/Step = 1). If missing, local volatility is assumed.

 Warning

GARCH_FORECI(.) function is deprecated as of version 1.63; use the GARCH_FORE(.) function instead.

Remarks

  1. The underlying model is described here.
  2. The time series is homogeneous or equally spaced.
  3. The time series may include missing values (e.g., #N/A) at either end.
  4. For the input argument - ([α]) (parameters of the ARCH component):
    • The input argument is not optional.
    • The value in the first element must be positive.
    • The order of the parameters starts with the lowest lag.
    • One or more parameters may have missing values or error codes (i.e., #NUM!, #VALUE!, etc.).
    • In the case where alpha has one non-missing entry/element (first), no ARCH component is included.
    • The order of the ARCH component model is solely determined by the order (minus one) of the last value in the array with a numeric value (vs. missing or error).
  5. For the input argument - ([β]) (parameters of the GARCH component):
    • The input argument is optional and can be omitted, in which case no GARCH component is included.
    • The order of the parameters starts with the lowest lag.
    • One or more parameters may have missing values or error codes (i.e., #NUM!, #VALUE!, etc.).
    • The order of the GARCH component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
  6. For GARCH (1, 1), the squared of the forecast standard error (i.e., conditional variance) is expressed as follows:$$E[\sigma_{T+k}^2]=\alpha_o\times\frac{1-(\alpha_1+\beta_1)^k}{1-(\alpha_1+\beta_1)}+(\alpha_1+\beta_1)^k\sigma_T^2$$
  7. The forecast standard error (i.e., conditional volatility) converges monotonically to its long-run average. For the case of GARCH (1, 1):$$E[\sigma_{T+k\rightarrow\infty}^2]=\frac{\alpha_o}{1-(\alpha_1+\beta_1)}$$

Files Examples

Related Links

References

Comments

Article is closed for comments.

Was this article helpful?
0 out of 0 found this helpful