Devuelve un array de celdas para el (desplazamiento hacia atrás, backshifted o series de tiempo retrasadas).
Sintaxis
LAG(X, Order, K)
- X
- Son los datos de series de tiempo univariantes (un array dimensional de celdas (Ej.filas o columnas)).
- Order
- Es el orden de tiempo en las series de datos (Es decir, el primer punto de datos correspondiente a la fecha (la más temprana fecha=1 (defecto), la última fecha=0)).
Orden Descripción 1 ascendente (el primer punto corresponde a la fecha más temprana) (defecto) 0 descendente (el primer punto corresponde a la última fecha) - K
- es la orden de retraso o lag order (Ej. k=0 (no lag), k=1 (1st lag), etc.).Si falta, se asume un valor por defecto de cero.
Observaciones
- Las serie de tiempo es homogénea e igualmete espaciada.
- Las series de tiempo puenden incluir valores faltantes (Ej. #N/A) en cada extremo.
- k (es decir, lag order) debe ser no negativo y menor que el tamaño de las series de tiempo.
- la serie de tiempo desfasada o lagged es:
$$ \left[z_t\right] = L^k\left[x_t\right] = \left[x_{t-k}\right] $$
Where:
- $ \left[z_t\right]$ es la serie de tiempo retrasadas o lagged.
- $\left[x_t\right]$ es la entrada de las series de tiempo.
- $L$ es el operador de retraso (lag operator).
- $k$ es la orden de retraso (lag order).
$k \leq T-1 $
Ejemplos
Ejemplo 1:
|
|
Ejemplos de archivos
Enlaces Relacionados
Referencias
- D. S.G. Pollock; Handbook of Time Series Analysis, Signal Processing, and Dynamics; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
- James Douglas Hamilton; Time Series Analysis; Princeton University Press; 1st edition(Jan 11, 1994), ISBN: 691042896
- Tsay, Ruey S.; Analysis of Financial Time Series; John Wiley & SONS; 2nd edition(Aug 30, 2005), ISBN: 0-471-690740
- Box, Jenkins and Reisel; Time Series Analysis: Forecasting and Control; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848
- Walter Enders; Applied Econometric Time Series; Wiley; 4th edition(Nov 03, 2014), ISBN: 1118808568
Comentarios
El artículo está cerrado para comentarios.