Devuelve una matriz/array de volatilidades o desviaciones estándar (sigmas) condicionales ajustadas (en la muestra).
Sintaxis
GARCH_VOL(X, Order, mean, alphas, betas)
- X
- son los datos de series de tiempo univariante (una matriz/array dimensional de celdas (Ej. filas o columnas)).
- Order
- el la orden de tiempo en la series de datos (Ej. el primer punto corresponde a la fecha ( la más temprana fecha=1 (por fecto), la última fecha=0)).
Orden Descripción 1 ascendente (el primer punto de datos corresponde la más temprana fecha=1 (por fecto) 0 descendente (el primer punto de datos corresponde a la última fecha) - mean
- es la media del modelo GARCH (Ej.mu).
- alphas
- son los parámetros de la (p) modelo de componentes ARCH (comenzando con el lag más bajo).
- betas
- son los parámetros de la (q) modelo de componentes GARCH (comenzando con el lag más bajo).
Observaciones
- El modelo subyacente se describe aquí.
- Las series de tiempo son homogéneas e igualmente espaceadas
- Las series de tiempo pueden incluir valores faltantes (Ej. #N/A) en cada extremo.
- Es el número de parámetros en los argumentos de entrada- alpha - determina el orden del modelo de componentes ARCH.
- Es el número de parámetros en los argumentos de entrada - beta - determina el orden del modelo de componentes GARCH.
Ejemplos
Ejemplo 1:
|
|
Ejemplos de archivos
Enlaces Relacionados
Referencias
- Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6
- Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
Comentarios
El artículo está cerrado para comentarios.